Interpretability, Explainable AI
Interpretable Machine Learning. Overview of different methods:
Interpretable models
Local explanations
- LIME. Local Interpretable Model-Agnostic Explanations (Code, CRAN, PyPI)
Global explanations
- Feature importance
- SHAP. Shapley Additive Exlanations (Code, PyPI)
- DeepLift. Deep Learning Important Features (Code, Video)
Timeseries
Critics
- Stop explaining black box machine learning models for high stakes decisions and use interpretablemodels instead (2019) Cynthia Rudin
- Limitations of Interpretable Machine Learning Methods (2020)
- Please Stop Permuting Features. An Explanation and Alternatives (2019) Giles Hooker, Lucas Mentch
- Attention is not Explanation (2019) Sarthak Jain, Byron C. Wallace
- Pitfalls to Avoid when Interpreting Machine Learning Models (2020) Christoph Molnar, Gunnar Konig, Julia Herbinger, Timo Freiesleben, Susanne Dandl, Christian A. Scholbeck, Giuseppe Casalicchio, Moritz Grosse-Wentrup, Bernd Bisch
Software
Star
Issue